
http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 1/9

Setting up a WLS-Webservice Example in Eclipse
I like the API Examples that ship with WLS because they contain a level of complexity that is

just enough to demonstrate the technology slice at hand. In other words, they are kept very

simple. Therefore they are an excellent starting point for small test applications that can be

used in very complex environments. We want to look at the Example: “Creating a Web

Service from an Existing WSDL File”. We demonstrate how to quickly integrate it into

Eclipse with full support of code completion, context sensitive help and on-the-fly compilation

support.

1 Contents

Setting up a WLS-Webservice Example in Eclipse ... 1
1 Contents .. 1
2 The Example from WLS ... 1

3 Setting up the Example in Eclipse .. 2
3.1 Creating a Java Project .. 3

3.2 Importing the WLS example ... 3

3.3 Build and Run the example ... 5

3.4 Configuring on-the-fly compilation support .. 7

3.5 Create an ear archive ... 8

4 Conclusion .. 9

2 The Example from WLS

Let’s have a quick look at the example itself. It is just a simple web service called
“TemperatureService” that is called from a stand-alone java client, as depicted in the following
diagram.

Scorpio

Win7, i7-QM 2,4GHz, 4GB RAM

WLAN 192.168.0.24

wl_server

TemperatureService
TemperatureClient.javaJ

getTemp()

Figure 1. Web service Example with a stand-alone Java Client calling a web service on

the example server.

This example demonstrates the build process of a web service starting from a wsdl file, which

is depicted in the following diagram.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 2/9

input

TemperatureService.wsdl

portType name="TemperaturePortType"Attr.

TemperatureService_wsdl.jar

$temperatureJwsDir

TemperaturePortType.javaJ

Data Binding Artefacts

wsdlc

destJwsDir="${temperatureJwsDir}"Attr.

destImplDir="${temperatureImplDir}Attr.

${temperatureImplDir}

generate

TemperaturePortTypeImpl.javaJ

jwsc

destdir="${temperature.ear}"Attr.

jws: file="TemperaturePortTypeImpl.java"Attr.

temperature.ear

TemperaturService

generate

TemperaturClient.javaJ

input

input

clientgeninput

generate

edit

 public float getTemp(zipcode)
 {
 return 101.0f
 }

Your Business LogicJ

Figure 2. Build-Process of the web service.

The process starts from the file TemperaturService.wsdl. The ant task wsdlc generates a JWS

file TemperaturPortTypeImpl.java which is a stubbed out web service template. We insert our

business logic in this file. The wsdlc task also generates a JAR file containing additional

artifacts, needed to compile the web service. These two elements comprise the input for the

jwsc ant task which eventually generates the deployable web service. The file

TemperaturService.wsdl also serves as input for the client which is generated and built by the

clientgen ant target.

We find the documentation for this example on the help page of our example server

http://localhost:7001/docs/server/examples/src/examples/webservices/wsdl2service/instructio

ns.html?skipReload=true. For convenience we provide a link to a PDF copy here.

3 Setting up the Example in Eclipse

Now let’s turn to the hands-on work. We want to set up the example in Eclipse to be able to

run and modify it. However we do not change the build workflow because we want to

demonstrate a quick solution. As we will see later there is a conceptual gap between the

standard way of the Eclipse IDE to build web services, and the example from WLS. We can

imagine the WLS example as an external build like it is normally used in software

development projects, supported by cruise control or maven.

http://localhost:7001/docs/server/examples/src/examples/webservices/wsdl2service/instructions.html?skipReload=true
http://localhost:7001/docs/server/examples/src/examples/webservices/wsdl2service/instructions.html?skipReload=true
http://dl.dropbox.com/u/16989587/weblogic-corner/ExamplePDFs/Creating%20a%20Web%20Service%20from%20an%20Existing%20WSDL%20File.pdf

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 3/9

3.1 Creating a Java Project

In Eclipse we create a new Java Project with the new project wizard as depicted in the

following figures.

Figure 3. Dialog to create a new Project.

In the first step we choose the Java Project nature, since we want to use eclipse’ JDT features.

In the next step we provide the name webservices-wsdl2service for the project. We could

choose any name but we stick to the proposal of the example documentation here.In the last

step we remove the folder src from the build path because we want to set up our own built

path from the pre-existing file structure of the example.

3.2 Importing the WLS example

In this step we will import only a single example from the collection of api examples. We

therefore have to made some ajustments to the path settings.

We right-click on the new project in the package explorer and choose import to import the

example files from weblogic samples directory. This is a two-step dialog as depicted below:

Figure 4. Dialog to import the sample into the projct.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 4/9

In the first step we choose to import from the file system. In the next step we navigate to the

example files of the WLS distribution. We select the directory for import and confirm that we

want to use top-level folder and conclude the dialog.

In the same manner we import the file example.properties which currently not par t of the

project.

Figure 5. Importing example.properties into the project folder.

We navigate to the file and select it. This time we unselect “Create top-level folder” because

we want the file to be placed directly in the project folder.

Now we have to make some adjustments to the example.properties and the build.xml files to

reflect our slightly diverging file structure.

In the example.properties file we comment the property examples.home.dir and instead

change it to a relative path, pointing to the parent folder, which is the basis for all ant

operations.

Figure 6. Adjusting the examples.properties file.

In the build.xml file we adjust the path which points to the example.properties file.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 5/9

Figure 7. Adjusting the build.xml file.

As another prerequisite we need to import some ant tasks and create the server control pane

for wl_server, but this is already set up from the last project. Please refer to.

http://weblogic-corner.blogspot.de/2012/03/wls12c-and-oracle-enterprise-pack.html

For convenience we display the ant runtime configuration with the additional tasks and their

corresponding class definitions in the weblogi.jar file. It is available from the main menu

“Window->Preferences”.

Figure 8. Adding additional ant tasks to eclipse.

Now we are ready to build, deploy and run the example.

3.3 Build and Run the example

Although there is support for web services in eclipse through the Web Tools Platform

(http://www.eclipse.org/webtools/ws/) or through the OEPE

(http://docs.oracle.com/cd/E14545_01/help/oracle.eclipse.tools.common.doc/html/index.html

#webservices), we use neither of these options. We rather stick to the ant file is part of the

imported example, since our goal is to demonstrate the integration of this example into

eclipse.

Therefore we open the build.xml file in the project webservices-wsdl2service. If we switch to

the Java EE Perspective, we should see the outline view on the right hand side. Otherwise we

open the outline view from the “Window” menu. This is depicted in the figure below.

http://weblogic-corner.blogspot.de/2012/03/wls12c-and-oracle-enterprise-pack.html
http://www.eclipse.org/webtools/ws/
http://docs.oracle.com/cd/E14545_01/help/oracle.eclipse.tools.common.doc/html/index.html#webservices
http://docs.oracle.com/cd/E14545_01/help/oracle.eclipse.tools.common.doc/html/index.html#webservices

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 6/9

Figure 9. Using the ant script to build and run the project.

Now we right-click the target, we want to run and choose “Run As-> 1 Ant Build”. This will

build the project. We start the weblogic server in the server pane and then execute the ant

target deploy in the same manner. Finally we execute the ant target “run” which will start the

client and print output to the console pane.

If we now change the business logic by changing the return value to 101.0f in the

implementation file of the web service as indicated by the picture below, we can use the ant

file to go through the full edit-build-test cycle.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 7/9

Figure 10. Editing the business logic of the web service.

After executing the ant targets build-redeploy-run, we observe that the client output reflects

our change and prints out 101.1

3.4 Configuring on-the-fly compilation support

Although we do not use the JDT for building our project, we want to use the compiler support

during editing. Therefore we have to adjust the Java Build Path. In a first step we include the

library weblogic.jar, thus eliminating all include errors.

Figure 11. Adding weglogic.jar to the Java Build Path.

As indicated in the figure above, we open the project’s property window and add the external

library weblogic.jar to the Libraries tab of the Java Build Path.

Since we want to edit the file TemperaturPortTypeImpl.java we add the start folder of the

package name to the “Source Folders” of the Java Build Path as indicated in the picture

below.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 8/9

Figure 12. Adding a package folder to the source folder of eclipse.

Therefore we open the Package Explorer and expand the top folder of the folder tree we want

to include. From the context menu we choose “Build Path->Use as Source Folder”

If we open the file TemperaturePortTypeImpl.java we now have compilation support and we

recognize that the JDT complains about the compile error “TemperaturePortType cannot be

resolved to a type”. This interface is generated with wsdlc and is included in the

TemperaturService_wsdl.jar as show in the picture below. However we cannot add it to the

build path libraries because the jar file only contains the uncompiled java class which is not

recognized as java type.

Figure 13. Contents of the generated jar file.

Alternatively we could unpack the jar file and add it to the source path. But we rather ignore

the compile error.

3.5 Create an ear archive

If we want to deploy the web service on a remote weblogic server, it is more convenient to

package it into an ear archive. Therefore we add an additional ant target to our build.xml file.

We need to include the ant task wlpackge first which is depicted in the next figure.

http://weblogic-corner.blogspot.com 30.03.2012 16:38:00

WLS12c_WS_from_WSDL.docx

Seite 9/9

Figure 14. Including wlpackage to the ant runtime.

In the build.xml we add the following target, which can be executed after the build.service.ear

and create deployable archive in the distribution directory.
 <target name="build.service.ear">

<wlpackage tofile="${dist}/temperatur.ear" srcdir="${temperature.ear}"
destdir="${temperature.ear}" />

 </target>

We can also add an additional target to deploy our ear file instead of the exploded version.
 <target name="deploy.ear">
 <wldeploy action="deploy"

name="${temperature.ear.deployed.name}"
source="${dist}/temperatur.ear" user="${wls.username}"
password="${wls.password}" verbose="true"
adminurl="t3://${wls.hostname}:${wls.port}"
targets="${wls.server.name}" />

 </target>

We have to run this target manually because it is not included in the dependency list of the

default target. We test it with the same client and it certainly produces the same result.

4 Conclusion

In this little workshop we showed how to integrate a simple web service example into an

eclipse project which features context help, code assistant and on-the-fly compilation. Starting

from a running example, which is part of the WLS installation, we produced an eclipse

project which builds, deploys and runs this example. However instead of changing code with

a text editor as it would be required in the original example, we now have the full IDE

support. This enables us to quickly extend it to include code for prototypes and tests

scenarios.

This workshop exemplifies an approach for taking any of the WLS examples and convert

them into mini projects that could be deployed in complex environments for prototyping or

analysis purposes.

